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Abstract – This paper studies the modeling and control of 

quadcopter. It models the quadcopter nonlinear dynamics 

using Lagrange formalism and design controller for attitude 

(pitch & roll), heading & altitude tracking of the quadrotor. 

Mathematical modeling includes aerodynamic effects and 

gyroscopic moments. One Non-linear Control strategy, 

Second-Order Sliding Mode Control (SOSMC), based on a 

supertwisting algorithm has been proposed. The Controller 

has been implemented on the quadrotor physical model 

using Matlab/Simulink software. Finally, the performance of 

the proposed controller was demonstrated in the simulation 

study. The simulation results show excellent modeling and 

control performance. 

Keywords-SOSMC; Lagrange; Mathematical Modelling; 

Quadrotor; MATLAB/Simulink 

I.  INTRODUCTION  

 Quadrotor aerial vehicles are growing in increasing 
popularity in the fields of autonomous navigation, target 
tracking and surveillance, information gathering, and other 
high-level applications [1]. 

To perform tasks with high reliability, the quadrotor 
UAV requires good flight control capabilities. Therefore, 
the development of a specialized controller, which can 
take into account the quadrotor modeling nonlinearity 
with strongly coupled dynamics, underactuated 
characteristics, as well as parametric uncertainty, is always 
desired. 

To ensure the stability of quadrotors, nonlinear, and 
robust controllers are often developed to reduce the effects 
of disturbances and uncertainties. 

Going through the literature, one can see that most of 
the papers use two approaches for modeling the 
mechanical model. They are Newton-Euler and Newton-
Lagrange but the most used one and it is most familiar and 
better in modeling is Newton-Euler [2, 3]. 

Linear adaptive methods such as model reference 
adaptive control have been suggested [4]. However, as for 
most linear methods, the achievable trajectory of the 
quadrotor is restricted due to the assumption of 
linearization. [5] proposed feedback controllers, which are 
based on a hierarchical control algorithm. The attitude is 
governed by employing a hybrid controller to overcome 
the well-known topological constraint, employed as a 
virtual input to stabilize the aircraft position, but still, there 
is a tracking problem. 

For nonlinear control with unknown disturbance 
rejection, higher-order sliding mode control with 
active disturbance rejection based on nonlinear 
extended state observer [6-8] were designed. With this 
control scheme, higher-order SMC has shown 
effectiveness and accuracy in trajectory tracking. 

Xu Zhou et al. [9] used both the PD controller and 
the sliding mode controller for the control of a 
quadrotor and showed that the sliding mode control 
exhibits efficiency, accuracy, and robustness than PD. 

Considering fault-tolerant control (FTC), various 
nonlinear algorithms including backstepping, sliding 
mode, and adaptive FTC approaches for quadrotor 
attitude and altitude tracking can be found in [10], 
[11], and the references therein. However, in many 
existing works in the literature, backstepping 
controllers have only been developed for the position 
(i.e., outer-loop) control of quadrotors [12]. 

For indoor control of quadcopters different 
localization techniques can be employed, for example, the 
VICON motion capture system is one of the preferred 
systems for precise localization and it has been used 
widely in recent quadcopter studies [13, 14]. 

In summary, the literature on quadrotor control 
ignores the aerodynamic effect, air disturbance, and 
gyroscopic moment in the dynamic modeling of the 
quadrotor.  Besides, in the case of sliding mode controller 
implementation, it does not reduce both the control effort 
and chattering effect. 

The main contributions of this paper are 
summarized below in one paragraph.  

This paper uses a novel approach to address the 

above problems. It designed a novel robust higher-

order SMC controller with minimum control effort. It 

also shows the excellent effectiveness and accuracy of 

the designed controller using simulation and 

performance index measures. 

The paper is organized into five sections. In section 1, 
it introduces the quadrotor UAV. In Section 2, it models 
the physical system by considering the aerodynamic and 
gyroscopic effects. In Section 3, it designs second-order 
SMC based on the supertwisting algorithm. In Section 4, 
it presents the simulation results obtained from the control 
implementation of the physical system in the Simulink 
environment. Finally, in Section 5, it presents the control 
effort and then concludes the work. 
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II. MATHEMATICAL MODELLING 

     In this section, a mathematical model of Quadrotor 
UAV is established using the Lagrange formalism. 

A. Rotational Matrix 

      The orientation of the quadrotor is represented by 
Euler angles (pitch, roll, and yaw).To transform the body-
fixed frame into the inertial frame; the z-y-x rotational 
matrix is considered [15].  

      To avoid system singularities, it is important to assume 

the angle bound. 
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    Where c  and s  represent Cosine and Sine 

respectively. 

    Where 
(x,φ)

R ,
(y,θ)

R and 
(z,ψ)

R  represent rotation of rigid 

body in x, y and z-axis respectively. 

The Euler rotation about z-y-x or 
xyzR is given by 

xyz
R =

(z,ψ)
R

(y,θ)
R (x,φ)

R  
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 
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            (2.3) 

        The model partitions naturally into translational and 

rotational coordinates [6] 

 

( ) 3Rξ= x,y,z            ( ) 3Rη= φ,θ,ψ                   (2.4)  

( )ξ= x,y,z   denotes the position vector of the center of 

mass of the Quadrotor relative to the fixed inertial frame 

and   ( )η= φ,θ,ψ  denotes the orientation of the quadrotor 

in the inertial frame. This is shown in Fig. 1 below 

B.     Forces, Moments and Torques on Quadrotor 

I) Thrust Force 

         Quadrotor has four propellers so that it produces four 

thrust forces. 

 


4

i

i=1

F= F                                (2.5)                                                                                       

1 2 3 4
F=F +F +F +F                  (2.6) 

 

Figure 1. Typical quadrotor schematic diagram with the body and inertial 

frames [16] 

 

 

II) Moments 

a) Gyroscopic Moment: There are two gyroscopic 

torques, this is due to the motion of the propeller (Mgp) 

and the quadrotor body (Mgb) [17] given by: 
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        Considering the quadrotor geometry is symmetric, 
all off-diagonal inertia matrix elements are zero. 

.

.

.

φ

Ω= θ

ψ
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 
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 
 

                            

b) Aerodynamic friction moment: the quadrotor 

moves in the air, due to this it is subjected to aerodynamic 

friction. The torque caused by this the aerodynamic 

friction is called aerodynamic friction moment. It is given 

by: 

      
 
 
 

Τ
. . .
2 2 2

a 4, 5 6
M = diag(k k ,k ) φ θ ψ               (2.10) 

4, 5 6diag(k k ,k ) is the diagonal matrix of coefficients and 
.
2

η  is an angular velocity squared vector for rotational 

dynamics. 
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III) Torques 

a) Pitch torque 

         It is proportional to the difference of the thrust 
force generated by the second and fourth propellers   [18-
20]. 

 

                                   
φ 4 2

τ = l(F -F )                            (2.11) 

 

b)  Roll torque 

         It is proportional to the difference of the thrust 
force generated by the first and third propellers [7-9]. 

 

θ 3 1
τ = l(F -F )                              (2.12) 

c)  Yaw torque 

        It is proportional to the difference of thrust force 

generated by all propellers [7-9]. 

 

ψ 1 2 3 4
τ = c(F -F +F -F )                      (2.13) 

 

B. Modeling with Lagrange formalism 

       To obtain the quadrotor dynamics in terms of 
Lagrange, we use the Lagrange partial differential 
equation. 

 

.

d L L
F

dt q
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                               (2.14) 

      Where ( )ξF= F ,τ .We can calculate the translational and 

rotational components as follows 
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      Computing the Lagrange partial differential 

equation for all six generalized coordinates, get the 
following differential equations. 
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III. CONTROL SYSTEM DESIGN 

A.   Higher Order Sliding Mode Controller 

I) Super-twisting algorithm 

       Consider once more the dynamical system of relative 

degree 1 and suppose that 

                            
.

σ =h(t,x)+g(t,x)u                         (3.1) 

         Furthermore, assume that for some positive constants 

C, MK , mK , MU , q  

. .

M m M M

h
h +U g C,0 K g(t,x) K , < qU ,0<q<1

g
   

                                                                                         (3.2)   

      Then the control signal becomes  

1

2U=-λ σ sign(σ)+u     
.

M

M

-u,for u >U
u=

-αsign(σ),for u <U



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(3.3)  

Theorem: with mK α > C  and λ  sufficiently large, the 

controller (3.3) guarantees the appearance of a 2-sliding 

mode 
.

 0 = =  in the system, which attracts the 

trajectories in finite time. The control u enters in finite 
time segment  - ,

M M
U U  and stays there. It never leaves the 

segment, if the initial value is inside at the beginning. For 
the theorem to be true, the sufficient condition is provided 
below 

  

m M

m

2

m

2
(K α+C)K (1+q)

(K α -C)
λ >

K (1-q)
                         (3.4)                

a) Design of sliding mode control for altitude (z) 

        The state-space equation for altitude is as follows 

                 

.

5 6

.
31

6 6

x = x

ku
x = (cφcθ) - x -g

m m

                       (3.5) 

       Then the linear sliding surface form as 
.

σ = ce+e   

c > 0 it c is larger the sliding dynamics decays rate is 

larger. Where c is decay rate. 
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      Where 
d

5 5e = x - x  and
.. .

d

5 5e= x -x . By select c be 

3, then the sliding surface become  

 

                                   
.

σ = 3e + e                             (3.6) 

     Then computing 
.

σ  get     

. ...
31

5 6 5 63 ( )d d ku
x x x c c x g

m m
  = − + − + +     (3.7)               

    From the above 3.7, we assign 

. ..
3

5 6 5 6( , ) 3 d d k
h t x x x x x g

m
= − + + + and

( )
( , )

c c
g t x

m

 
= −  

b) Design of sliding mode control for attitude (  ,  ) 

For   

      The state-space equation for pitch is as follows 

    

.

7 8

. -
2

r8 1 2 2 10 3 10 12 4 1 8

x = x

x = a u +a Ω x +a x x -k a x

   (3.8) 

     Then the linear sliding surface form as 
.

σ = ce+e   

c > 0 it c is larger the sliding dynamics decays rate is 

larger. Where c is decay rate. 

 

    Where 
d

7 7e = x - x  and

.. .
d

7 7e= x -x . By select c be 

3, then the sliding surface become  

                  
.

σ = 3e + e                                             (3.9) 

    Then computing 
.
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−
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    From the above equation, we assign 
. ..

2
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−
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For   

           The state-space equation for the roll is as follows 

  

.

9 10

. -
2

r5 510 4 3 8 6 8 12 4 10

x = x

x = a u +a Ω x +a x x -k a x

 (3.11) 

          Then the linear sliding surface forms as 
.

σ = ce+e   c > 0 it c is larger, the sliding dynamics 

decay rate is larger. Where c is decay rate. 

           Where 
d

9 9e = x - x  and
.. .

d

9 9e= x -x . By select 

c be 3, then the sliding surface become 

.

σ = 3e + e                                      (3.12) 

           Then computing 
.
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−
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           From the above equation, we assign  

. ..
2

9 10 9 5 8 6 8 12 5 4 10( , ) 3 3d d
rh t x x x x a x a x x k a x

−

= − + −  − +

 and 4( , )g t x a= −                                                                          

c)  Design of sliding mode control for heading ( ) 

          The state-space equation for yaw is as follows 

       

.

11 12

.
2

7 712 8 10 8 6 12 4

x = x

x = a x x -k a x +a u

                  (3.14) 

         Then the linear sliding surface forms as 
.

σ = ce+e  c > 0 it c is larger, the sliding dynamics 

decay rate is larger. Where c is decay rate. 

        Where 
d

11 11e = x - x  and

.. .
d

11 11e= x -x . By 

selecting c be 3, then the sliding surface becomes 

                               
.

σ = 3e + e                                   (3.15) 

        Then computing 
.

σ  we get   

. ...
2

11 12 11 8 10 8 6 7 12 7 43 3d dx x x a x x k a x a u = − + − + −     (3.16) 

        From the above equation, we assign 

. ..
2

11 12 11 8 10 8 6 7 12( , ) 3 3d dh t x x x x a x x k a x= − + − + and 

7( , )g t x a= −  

B.    Designed Control System Scheme Block Diagram 

          A diagram of the proposed control approach can be 

seen in Fig. 2. The diagram clearly illustrates the 

 Implementation of a control system designed on the 

quadrotor physical system. 
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Figure 2. Control system scheme block diagram 

 

C.   Reference or Desired values for Tracking 

 

               

0.5

0.174sin( )

0.174sin( )

0.174sin( )

d

d

d

d

z t

t

t

t







= +


=


=
 =

                     (3.17) 

D.    Calculated Controller Parameters for Tracking 

      The controller parameters listed below in Table I are 

calculated based on the above theorem. 

TABLE I. REGULATION PROBLEM CONTROLLER PARAMETERS FOR 

SLIDING MODE CONTROL 

Variables/stat

es 

 

Calculated Values 

 for Super-twisting 

SMC 

 for Super-

twisting SMC 

Z(altitude) 60 1 

Pitch(phi) 15 5 

Roll (theta) 15 5 

Yaw (psi) 
5 1 

IV. SIMULATION RESULTS AND ANALYSIS 

       A.   Simulation Graphs and Analysis 

       In this section, numerical simulations are carried 
out on the quadrotor system to validate the control 
performance of the proposed sliding mode control. For 
simulation purposes, the parameters listed in Table II are 
used. 

 

 

 

TABLE II. PHYSICAL PARAMETERS FOR THE QUADROTOR 

[17] 

 

        The overall results are shown in Fig. 3, Fig. 4, Fig. 5, and 

Fig. 6, respectively.Fig.3 demonstrates the tracking 

performance of altitude, which is shown that the response of 

the quadrotor can follow the desired value as closely. Fig. 4, 

Fig. 5, and Fig. 6 show the tracking performances of the 

three Euler angles, i.e., pitch, roll, and yaw, respectively. It 

shows that the quadrotor tracks the reference values for the 

three Euler angles as closely as possible with errors in the 

order of 0.001. 

         It can be seen from the above simulation results 
that the proposed third-order sliding mode control is 
effective and accurate. 

Figure 3 Altitude tracking controller performance using Third-order SMC 

 

 

 

 

 

Parameters 

 

Calculated Parameter  

Values and Unit 

Arm Length(l)  0.5m 

Total mass 0.5 kg 

Quadrotor mass moment of 

inertia (I) 
diag (0.005,0.005,0.01) kgm2 

 Motor inertia (Jr ) 2.8385*10-5 N.m/rad/s2 

 Coefficient of Lift (b) 2.9*10-5 

 Coefficient of Drag (d) 3*10-7 

Aerodynamic friction 

Coefficients (K1,2,3) 
0.3729 

 Translational drag 

Coefficients (K4,5,6) 
5.56*10-4 

Gravitational acceleration(g)  9.81 m/s2 
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Figure 4. Pitch Tracking controller performance using Third-order SMC 

 

Figure 5. Roll tracking controller performance using Third-order SMC 

 

Figure 6. Yaw (heading) regulation controller performance using Third-

order SMC 

 

D.  3D tracking using second-order super twisting SMC 

II.   Regular helix tracking 

         In this section, the regular helix tracking 
performance of the designed controller is demonstrated 
using three controlled variables. The variables are pitch, 
heading, and altitude. The variables selection among the 
four candidates is based on one from altitude, one from 
attitude, and one from heading. The desired trajectory is a 
regular helix generated from these parametric equations. 
The base of the regular helix is an ellipse. 

 

                                    

4sin( )

5cos( )

2

d

d

xd t

yd t

zd zd t











= =

= =

= = +

         (3.18) 

xd , yd and zd  are the desired trajectories in the x-axis, 

y-axis, and z-axis respectively. 

 

     In Fig.7, the result shows the tracking controller 

performance of the designed pitch, heading, and altitude 

controller on three-dimensional space. As seen from the 

three-dimensional plot, the quadrotor has given a mission 

to track desired the three-dimensional trajectory indicated 

by the blue solid line described using the above parametric 

equations. As expected, the designed controllers for the 

three variables enable the quadrotor to track perfectly the 

desired three-dimensional trajectory. 

 

Figure 7. 3D regular helical trajectory tracking using second-order SMC 

 

 

 

III.   Oblique helix tracking 

        In this section, the oblique helix tracking 
performance of the designed controller is demonstrated 
using the three controlled variables. The variables are roll, 
heading, and altitude. The variables selection among the 
four candidates is based on one from altitude, one from 
attitude, and one from heading. The desired trajectory is 
an oblique helix generated from the parametric equations 
below. 

       

5

5cos( )

d

d

xd t

yd t

zd zd t











= =

= =

= =

                             (3.19) 

xd , yd and zd  are the desired trajectories in the x-axis, 

y-axis, and z-axis respectively. 

 

         In Fig.8, the result shows the tracking controller 

performance of the designed roll, heading, and altitude 

controller on three-dimensional space. As seen from the 

three-dimensional plot, the quadrotor has given a mission 
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to track the desired three-dimensional trajectory indicated 

by the blue solid line described by the above parametric 

equations. As expected, the designed controllers for the 

three variables enable the quadrotor to track perfectly the 

desired three-dimensional trajectory. 

 
Figure 8. 3D Oblique helical trajectory tracking using second-order SMC 
 

  

E.  Control Signals for Tracking using Second-order SMC 

 

       The control law is designed in the control system 

section using second-order SMC based on a super twisting 

algorithm. The quadrotor physical system contains four 

control inputs as seen from the dynamic modeling 

equations. The control inputs are U1, U2, U3, and U4 

respectively. The control effort liberated to track the desired 

trajectory depicted in equation (3.17) is shown below in Fig. 

9, Fig. 10, Fig. 11, and Fig.12. The control simulation for 

pitch, roll, and yaw control signal is done by taking 

maximum amplitude of references input for the three Euler 

angles and give this as step signal for the quadrotor plant. 

        The control efforts are within the practical region 
and less than what is needed in a real-life scenario. Typical 
quadrotor motors can generate control signals with mild 
rotation (around 3000 rpm), so we can implement the 
designed controller algorithm in real-life application. 
Besides, the chattering effect is reduced to a greater extent 
to support this numerical value; the frequency of oscillation 
is from 0 to 10 Hz (0 to pitch control effort and 10 to 
altitude control effort). The rest two lies in between these 
values.  

 

 

 

 

 

 

Figure 9. Altitude control signal for tracking 

 

  Figure 10. Pitch control signal for tracking 

 

Figure 11. Roll control signal for tracking 

 

        Figure 12. Yaw control signal for tracking 

 

F.  Higher-order SMC controller performance measure 
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         In this section, the designed higher-order SMC 

controller performance for tracking is measured in terms 
of the performance index. Performance indexes are used 
to measure the controller's effectiveness and accuracy. In 
this case, the designed controller performance is measured 
in terms of integral square error (ISE), integral absolute 
error (IAE), integral time square error (ITSE), integral 
time absolute error (ITAE), and mean square error (MSE) 
performance indexes. These indexes' numerical values are 
tabulated in Table III. 

TABLE III. HIGHER-ORDER SMC CONTROLLER 

PERFORMANCE MEASURE 

 

     As we have seen from Table 3 that all 
performance measures numerical values are less than 
0.05. This indicates the designed controller is highly 
effective and accurate in trajectory tracking. 

 

            CONCLUSION 

   In this paper, the nonlinear dynamic model of the 
quadrotor is derived using Lagrange formalism. The 
model contains two parts namely translational and 
rotational dynamics (Euler-angle dynamics). The 
nonlinear model includes the gyroscopic moments 
induced due to the rotational motion of the quadrotor 
body & propellers mounted on rotor. Besides, the 
aerodynamic friction moment & force are considered 
in the modelling. After the derivation of the dynamic 
model, a nonlinear control strategy (higher-order 
SMC) based on the supertwisting algorithm has been 
proposed. 

      For validating the performance and efficiency of 
the controller, a simulation is done via Matlab/Simulink.  
Besides, four performance indexes are implemented to test 
the effectiveness and accuracy of the designed controller. 
Second-order SMC is designed for four output-controlled 
variables separately. The controlled variables are altitude, 
pitch, roll, and yaw. The second-order SMC was 
implemented on the physical system for tracking 
problems. The controller is very effective; it can track the 
desired trajectory with fast & smooth response and good 
stability as shown from both simulation and performance 
index measures. Overall, the second-order SMC controller 

designed for the quadrotor for tracking is effective and has 
excellent performance. 
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Controlled 

variable 

Performance measure indexes 

 
ISE 

 
UAE 

 

ITS 
 

MSE 

Altitude 0.04 0.17 0.007495 0.017 

Pitch 0.0001 0.0038 0.0006 0.0003 

Roll 0.0002 0.0069 0.00017 0.0006 

Yaw 0.0002 0.0003 0.00005 0.0003 
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Mathematical calculation of control performance 
index: 
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