
Journal of Electrical Engineering, Electronics, Control and Computer Science

JEEECCS, Volume 2, Issue 4, pages 7-12, 2016

Raspberry Pi 2 security system using Windows

10 IoT

Constantin-Florian STĂNESCU, Valeriu Manuel IONESCU

Dept. of Electronics and Computer Science

University of Pitesti

Pitesti, Romania

valeriu.ionescu@upit.ro

Abstract – This paper presents the implementation of a

security system with proximity sensor, video camera,

display, and keypad, controlled by a Raspberry Pi single

board computer. The system will be controlled via

keypad interaction, and is connected to a server from

the network where it stores relevant data. The novelty

consists in using Windows 10 IoT, presented by

Microsoft in the summer of 2015 for ARM devices, as

operating system. The paper presents challenges of this

implementation, and of using Windows IoT in small

scale projects.

Keywords-security system; Window 10 IoT; Raspberry

Pi

I. INTRODUCTION

Security systems are ever-present in the current
world. They are used to survey and protect areas, but
also to send alerts when a certain event, determined by
hardware of software constraints, happens.

Small scale security systems differ from
professional security systems in implementation, and
costs. They use low power devices, with or without an
operating system, and only handle basic security
features, such as: motion detection sensors, buttons,
contacts, image and audio sensors, input devices,
simple displays (LCD) or LEDs, and alarm systems
(audio, lights, network, etc.). Professional security
systems can implement more advanced features, such
as video/audio recording, face recognition or smart
device connectivity, but this comes at a price of
needing more powerful hardware, and a complex
installing.

For implementing a simple security system, an
Arduino or similar board can be used [1] [2], however
the possibilities of future extending such system with a
new feature set, is limited. For some users there is also
a barrier that the development environment is limited,
as are the available libraries to be used. An alternative
is to use single board computers (a system including
all the necessary components for complete operation –
from microcontroller to graphics card, and I/O ports –
on a single PCB, except the power source).

Raspberry Pi, introduced in 2012, is a single board
computer which offers not only great flexibility with
the number of connectivity options, but has support for
the operating systems with the capability of writing
software solutions in high level languages. Its board

has a large online community, and maintains the code
compatibility in recent versions, 2 (introduced in
2015), and 3 (introduced in 2016). A notable mention
can be made for the Raspberry Pi Zero version that is
very cheap, but has reduced connectivity options.

This system is used in many projects [3], and is a
good choice for controlling a security system, due to
the large number of general purpose Output/Input
(GPIO) ports, its low price, and the low power
consumption.

The operating system for Raspberry Pi is also the
one to restrict the development options. While most
projects favor Linux (and C, or Java, as programming
languages), Microsoft offers Windows 10 IoT for this
platform, with direct GUI support included, and many
libraries to rapidly develop applications in Visual
Studio development application (also available for
free).

This paper presents the design and implementation
of a security system centered on the Raspberry Pi 2
platform using Windows 10 IoT, and C#, as
programming language. The hardware and software
components are presented, and the problems of the
implementation are outlined.

II. WINDOWS 10 IOT AND RASPBERRY PI

Raspberry Pi 2 is a programming board with a
900MHz quad-core ARM Cortex-A7 CPU, 1 GB of
RAM, and a VideoCore IV 3D graphics core.

The system keeps compatibility with older
versions, which is also the case of Raspberry Pi 3,
introduced in 2016. Keeping compatibility is good for
developers, meaning that for better performance, they
can simply swap the hardware while keeping the
software solution the same.

For this platform there are multiple operating
systems available: Linux (Raspbian, Debian, Ubuntu
Mate 15.10, Fedora, Arch Linux), RISC OS (ARM),
Snappy Ubuntu Core (IoT), and, finally, Windows 10
IoT. Compared to the other operating systems in the
list, Windows 10 IoT is the newest, and includes the
most radical changes when compared to the x86
versions.

Windows 10 was introduced by Microsoft in 2015,
and is the first operating system that tries to unify the
Windows OS families, following the principle of one

Constantin-Florian STĂNESCU, Valeriu Manuel IONESCU 8

core and multiple product sales. While the core is
common, thus reducing the development costs, the
commercial solutions offered to the users and
businesses can differ. Windows 10 IoT family has
multiple branches:

- Windows 10 IoT Enterprise: it is an x86
Windows version, a direct descendant of
Window Embedded. It is used for POS
terminal, kiosk or other outdoor display
(unattended). It is based on Universal
Windows (Metro), Classic Windows (desktop)
Apps

- Windows 10 IoT Mobile Enterprise: relates to
Windows 10 Mobile OS (Windows Phones),
and can be found on Enterprise mobile (for
example, handheld barcode scanners)

- Windows 10 IoT Core: it is the version that
targets the hobbyist – simple, cheap, low-
powered kit computers, such as Raspberry Pi
2, and 3, MinnowBoard MAX, DragonBoard
410c. These systems have a low amount of
memory, are usually passively cooled, and the
processing power is reduced. It runs only
Windows Universal Apps (portability), and
has a reduced WinRT stack.

The version targeted by the implementation
presented in this paper is Windows 10 IoT Core.

While being an important step forward, because it
is a Microsoft operating system dedicated to ARM
devices, it is a timid one (due to the reduced
community, and lack of some features available on
Linux), and the novelty of this system posed a number
of difficulties in the implementation.

Some of the problems to be named are: reduced
cross-platform support for Windows ARM (Java,
Mono); WindowsRT reduced feature set, security, and
task oriented programming makes cross-platform
programming difficult; no support for
System.IO.Console.* functions, although they are
supported by Mono ARM for Linux; no console
support for C#; isolated application security:
Windows.Storrage.* with async read/write functions;
poor command-line monitoring support; capturing
physical keyboard inputs in console applications; lack
of TP client libraries for exporting files to the network;
no VNC Server; Remote Display Experience only
available from OS 10.0.14295.1000 onwards;
CoreCLR ASP.NET 5 support from .Net Core is beta;
limited hardware support (for example, with wireless
dongles).

Another problem of this operating system is that an
application must be designed to operate with user
interface (headed), or without a user interface
(headless). A on the fly change is not possible, and a
reboot is necessary to change this behavior.

The advantages of this operating system are: it is
possible to implement and test the solution from
Visual Studio, having access to all the debugging
environment features; there are, also, many tutorials
from Microsoft [4] trying to increase the number of
developers for this operating system.

III. HARDWARE DESIGN

As shown by Fig. 1, the system’s hardware
diagram points out that Raspberry Pi 2 controls all the
other components:

- The proximity sensor sends information, if

motion was detected by Raspberry Pi 2.

- The LCD 16x2 is used to display information,

if motion was detected, and to display

messages that will guide the user to enter the

security code, and to select different menu

options. The information is also replicated in

the GUI that is sent via the HDMI connection,

or can be accessed using the Remote Display.

In this system, the GUI is only accessible for

development, as there is no monitor attached.

- The keypad allows the user to interact with

the system, being a USB connected device.

- The web camera connected via the USB

connection is able to take a picture that will

be sent to the web server, and saved for later

inspection. The camera is a normal one, with

the IR filter removed so that it is able to

capture images with the light of an IP LED.

Figure 1. Web camera open with sensor and IR filter visible.

To connect to the server, Raspberry Pi 2 needs a
permanent internet connection. When a motion was
detected, Raspberry connects to the server, and sends
information. The server writes the timestamp into a
log file when motion was detected, and saves the
received data. On the LCD, the message “Insert
password” appears, and the user must enter the
password to disable the alarm. If the password was
correct, the alarm is not activated. If the password was
incorrect, or enough time elapsed but the user did not
enter the password, Raspberry connects to the server
again, writes a corresponding message, and saves
another picture taken by the web camera. At this point,
the menu returns to the initial status, and is ready to be
awakened by movement, or by keyboard interaction.

The wiring for the PIR motion sensor, and the
LCD, is presented by Fig. 2.

Raspberry PI

2

16x2

 LCD

USB

keypad

Proximity

sensor

TCP

Server

Web

camera

Internet

Raspberry Pi 2 Security System Using Windows 10 IoT

9

Figure 2. Connecting the motion sensor and the LCD to the

Raspberry Pi 2 system. The visible variable resistance is used to

adjust the LCD contrast.

As presented above, in order to be able to take
images in dark environments, the IR filter, present in
the web camera, had to be removed [5]. This is
presented by Fig. 3.

Figure 3. A4 Tech PK-635 webcam with IR filter visible.

A webcam sample [6] was used as a model, and
pictures were taken when an event had occurred. It is
important to note that only certain versions of the

operating system (version 10.0.10586.0), and Visual
Studio development environment (Visual Studio 2015
update 2 with Windows SDK: version 10586) can use
this feature. The necessary (newer) versions were
installed, and development was possible.

IV. SOFTWARE DESIGN

It is important to note that the functioning is based
on asynchronous events. This is necessary in order to
prevent the application from “locking up” when
waiting for a processing loop, and to be able to process
a different task during that time.

The program flow starts at powering up, when
Raspberry Pi 2 initializes all pins and components to
be used in the project. Particularly, the LCD needs a
certain initialization sequence. The system is fully
functional when “Stanescu RST411” and second line
“* - activated” are displayed on the LCD.

At this point, the main application loop is running,
designed around the timer events, and the events
generated by different sensors. Basically, the system
waits for one of these events and progresses
accordingly. The flow is presented by Fig. 4.

After the initialization, the alarm is enabled, and
the Raspberry will poll the information from the
motion sensor to see if movement has occurred. The
decision block will determine if motion is present or
not. If motion was detected, the algorithm will enter
the “Processing the movement event” block. This will
prompt the algorithm to display on the LCD the
message to enter the password, and, at the same time,
it will connect to the server, and it will send the
message that moment was detected along with the web
camera image. This was necessary in the case of brute
force was used on the door, and the system operation
would be stopped before the next step would occur.
The server would have already received the image
with the potential intruder.

Figure 4. Software system flow diagram. The dotted blocks are functions with multiple processing lines.

Initializing pins and components Display information on LCD

Reading information from motion sensor

Motion?

Processing the movement event

and send information to the

server

Password

error/Timeout

?

Disable alarm
Processing

password error

Yes

Yes

No

No

Capture image and send

information to the server

Enable alarm

Wait alarm

reactivation

event

Wait

Alarm

reactivation via

menu

Constantin-Florian STĂNESCU, Valeriu Manuel IONESCU 10

Figure 5. Using the PowerShell to add a statup Windows 10 IoT appliction. In yellow is the headed application name and in red the app

startup command

In the next decision block, it is determined if the
entered password was correct, or if a timeout occurred.
If the password was correct, the alarm is disabled, and
it stays like this until it is enabled via the application
menu. In case of an incorrect password, it will enter
the “Processing password error” block, that will
establish a new connection to the server, and it will
send another message along with another image.
Finally, the algorithm will return to “Reading
information from motion sensor” block.

The debugging was made by targeting the remote
(Raspberry Pi) system, found by name or IP. This
allows the running of the application on remote
systems without actually installing it. In order to
install the application as a startup app, it is necessary
to find out the application name. This is done by
opening in Visual Studio, in the Solution explorer
window, the “Package.appxmanifest”, and from the
packaging tab, the “Package family name” can be
observed. Headed applications are those having a user

interface, while headless are those designed to run in
background (as services). As it was necessary to
interact with the application, the headed mode was
necessary to use. While the resources necessary to
operate in headless mode are smaller, other tests [7]
have shown that the gain is not substantial. Adding a
startup program is presented by Fig. 5. The
PowerShell command line: IoTStartup add was used
[8].

Another problem that had to be solved was the user
interaction by the means of the keypad. As the user
was looking at the LCD, and not at the application’s
GUI, it was necessary to capture all the pressed keys
by focusing on the first control in the application (it is
auto-focused by default, when the application started.
Then, as the user pressed keys, an async OnKeyDown
event was associated, and all keys were handled there
(the user never left that first control). The
e.KeyStatus.ScanCode from KeyRoutedEventArgs was
provinding the correct keys used.

V. TESTING AND RESULTS

The hardware connections were made, and the
system was installed as seen in Fig. 6, and Fig. 7.

Figure 6. Implemented system frontal view with keypad, LCD

and motion sensor.

The problem faced at this stage was related to the
system heat up due to the increased ambient
temperature (the temperature in the laboratory reached
35° Celsius). Because of this, the system would often
freeze. After ruling out other causes, such as SD card
corruption, or incorrect software operation, and
discovering the very hot integrated circuits on the
board, there were two possible solutions: to add a
cooling fan, or to place cooling pads on the processor.

In this case, the first solution was chosen and no more
freezes appeared.

Figure 7. Implemented system top view with added web camera

and Raspberry Pi.

Raspberry Pi 2 Security System Using Windows 10 IoT

11

Figure 8. System’s LCD with messages that are used to interract with the user

The system was tested, and the LCD message
prompted for the user to insert a password is presented
by Fig. 8.

Other observations related to the implementation
are:

- The various timeouts needed in used time
implementation: await
Task.Delay(TimeSpan.FromSeconds(1)), as
async functions.

- For camera capture the MediaCapture class
was used [6]. In order to have access to the
web camera, the “Package.appxmanifest” tab
of this project, the needed capability had to be
selected, otherwise an error would occur.

- Powering down the platform should be done
by selecting the corresponding button in the
user interface, or by typing shutdown /s /t 0
[9]. If a restart is necessary, the shutdown /r /t
0 should be used. This is important because
when closed directly by disconnecting the
power source, the system operation became
erratic, and in a few cases the system refused
to finish the booting process. This relates to
observations made on similar platforms
running Windows 10 IoT. If the Linux
operating system was used, there is the same
behavior, but in a smaller degree.

- The first idea on writing images to the server
was by using a FTP client. As there is no
implicit support for the FTP client in the
libraries available for Windows 10 IoT, a TCP
connection was used. The TCP connectivity to
the server was also implemented using async:

 _socket = new StreamSocket();

await _socket.ConnectAsync(hostName, Port.ToString());

CONCLUSION

This paper presented the implementation of a
simple security system based on Windows 10 IoT
running on Raspberry Pi 2.

The system reads motion information from a PIR
sensor, interacts with the user by means of an LCD
screen and a keypad, and it can send messages via
TCP to a network server.

The implementation showed that the Windows 10
IoT is still at its early stages (instability, lack of
software features in some versions), but if Microsoft

will continue to support the technology, it has the
potential to evolve into a leading solution for small
platform development. The convergent strategy
created by Microsoft (Universal Windows Platform,
Windows IoT, and Universal Windows App) is the
foundation for performance and stability.

Using C# and the Visual Studio for the software
development was an advantage, and allowed finding
and solving the problems easily and quickly.

The most important hardware problems to be
overcome were: the use of the UI (the application was
running as a headed app) made the system use the
graphics card, that in turn produced heat causing the
system freeze; the web camera had to be disassembled
in order to remove the IR filter, so that it can be used
in dark environments; the initial USB keypad that was
used had a bad hardware contact leading to repetition
of the pressed keys.

In the future, this system can be improved by:

- adding more sensors (such as a fingerprint
reader);

- switching to a headless operation (if the UI is no
longer needed – by using the application
setbootoption.exe [headed | headless]) for reduced
power consumption;

- using a better password as the current one uses
only the keys available on the keypad;

- using face recognition for identifying users, in
order to avoid entering a password.

REFERENCES

[1] Santoso Budijono, Jeffri Andrianto, Muhammad Axis
Novradin Noor. Design and implementation of modular home
security system with short messaging system, EPJ Web of
Conferences, 2014, DOI 10.1051/epjconf/20146800025, pp.
1-5

[2] Chun-Pai Jimmy Hsieh, Yang Cao. Home Security System.
Cornell University EE476 Final Project, May 5, 2004, Web.
https://people.ece.cornell.edu/land/courses/ece4760/FinalProj
ects/s2004/ch236/securitysystem.pdf, Available May 10, 2016

[3] VM Ionescu, F Smaranda, AV Diaconu. “Control System for
Video Advertising based on Raspberry Pi”, Networking in
Education and Research, RoEduNet, 2013, pp.1-4.

[4] Anders Lybecker, Sebastian Brandes. Developing IoT
solutions with Windows 10 and Raspberry Pi 2, Web.
http://goo.gl/4xA5jI, Available May 10, 2016.

[5] Instructables. Infrared web camera,
http://www.instructables.com/id/Infrared-IR-Webcam,
Available May 10, 2016.

Constantin-Florian STĂNESCU, Valeriu Manuel IONESCU 12

[6] Microsoft. Web Camera Sample, 2015,
https://developer.microsoft.com/en-
us/windows/iot/win10/samples/webcamsample, Available
May 10, 2016.

[7] Alexandru-Catalin Petrini, Valeriu Manuel Ionescu,
Implementation of the Huffman Coding Algorithm in
Windows 10 IoT Core, Proceeding of the ECAI 2016,
Romania, in press.

[8] Microsoft. Windows 10 IoT Core Command Line Utils, Web.

https://developer.microsoft.com/en-
us/windows/iot/win10/tools/commandlineutils, Available
May 10, 2016

[9] Anurag S. Vasanwala. Windows 10 IoT Core : Setting Startup
App, 2015, URL:
https://www.hackster.io/AnuragVasanwala/windows-10-iot-
core-setting-startup-app-887ed0, Available May 10, 2016

