
Journal of Electrical Engineering, Electronics, Control and Computer Science –
JEEECCS, Volume 10, Issue 35, pages 1-12, 2024

Chat System Using Transmission Control
Protocol/Internet Protocol And C

Programming Language

1st POPA Diana-Ioana
Faculty of Electronics, Communications and

Computers
National University of Science and Technology

POLITEHNICA Bucharest
Pitești, Romania

popa.diana.ioana11@gmail.com

2nd CIOROBEA Adriana-Andrada
Faculty of Electronics, Communications and

Computers
National University of Science and Technology

POLITEHNICA Bucharest
Pitești, Romania

adrianaciorobea20@gmail.com

3rd BEȘLIU-GHERGHESCU Andrei-
Alexandru

Faculty of Electronics, Communications and
Computers

National University of Science and Technology
POLITEHNICA Bucharest

Pitești, Romania
besliu_andrei_alex@yahoo.com

4th BIZON Nicu
Department of Electronics, Computer and Electrical

Engineering
National University of Science and Technology

POLITEHNICA Bucharest
Pitești, Romania

nicubizon@yahoo.com

5th DRĂGUȘIN Sebastian-Alexandru
Department of Electronics, Computer and

Electrical Engineering
National University of Science and Technology

POLITEHNICA Bucharest
Pitești, Romania

dragusin.sebi@yahoo.com

Abstract–In this paper, a chat system between two Wi-Fi
microcontrollers was developed using the TCP/IP
(Transmission Control Protocol/Internet Protocol) set of
communication protocols and a simplified set of the
C/C++ programming language in Arduino IDE
(Arduino Integrated Development Environment). The
purpose of the system is to allow users to send and
receive text messages between connected devices. The
main functionalities of the system include
communication between two ESP8266 microcontrollers
by implementing a robust and efficient communication
protocol between server and clients, encryption and
decryption of transferred data to ensure communication
security and an accessible user interface for the chat
system.

Keywords–chat system; TCP/IP; concurrent C
programming language; cryptography; Wi-Fi
microcontroller; Arduino

I. INTRODUCTION

A. The Problem Analyzed And The Objectives Of
The Paper
The paper addresses the implementation of

essential functionalities of a chat system, including
sending and receiving text messages. It focuses on
developing a robust and efficient communication
protocol between clients and the server using TCP/IP,
as well as encrypting data transferred between them to
ensure secure communication. Concurrent
programming is utilized as an approach where
multiple threads or processes run simultaneously,
sharing resources and cooperating to solve problems.

B. Relevant Scientific Context
The chat system implemented between two Wi-Fi

microcontrollers within the Arduino IDE development
environment represents an interesting combination of
IoT (Internet of Things), wireless communication and
embedded programming. Here are some relevant
aspects from a scientific perspective:

D. I. Popa, A. A. Ciorobea, A. A. Beșliu-Gherghescu, N. Bizon, S. A. Drăgușin 2

• ESP8266 microcontrollers: ESP8266 is a
microcontroller with integrated Wi-Fi
connectivity, used in IoT projects and smart
devices. It offers a compact and affordable
solution for connecting to Wi-Fi networks and
transmitting data.

• TCP/IP: TCP/IP is a set of communication
protocols used in computer networks.
Implementing a chat system between
microcontrollers involves using it to transmit
messages between devices.

• Arduino IDE: Arduino IDE is an integrated
development environment used for programming
compatible microcontrollers. It provides a user-
friendly interface for writing, compiling, and
uploading code to hardware devices.

• Communication between microcontrollers: The
chat system involves bidirectional communication
between two ESP8266 microcontrollers. This
includes managing the Wi-Fi connection,
transmitting, and receiving messages.

• I2C (Inter-Integrated Circuit): I2C is a serial
communication protocol used for connecting
peripheral devices to a microcontroller. In this
case, using two I2C lines for displaying messages
can be an efficient solution for interfacing with
display devices.

• Security and efficiency: In IoT projects,
emphasis is placed on communication security
and energy efficiency. Implementing a chat
system must consider these aspects, including
data encryption and resource management.

• Applications and implications: Chat systems
between embedded devices can be used in various
contexts, such as smart homes, environmental
monitoring, or industrial automation. Studies in
this field focus on optimizing protocols,
communication security and scalability.

II. LITERATURE REVIEW
In the document [1], the authors describe the

technologies and programming languages used to
develop a web-based and mobile chat application. The
server-side is built using Node.js, a runtime
environment that enables the creation of scalable
server-side applications. For real-time communication
between the client and server, they implement
Socket.IO, a JavaScript library that facilitates
WebSocket-based interactions. The application’s
database is managed with MongoDB, a document-
oriented database originally written in C++. On the
front end, they use JavaScript and the Express
framework to handle server functionality and ensure
smooth data exchange between the client and server.

In the document [2], the authors propose a method
for designing a network chat system using Socket
technology and cloud computing. Socket is a key
component of TCP/IP networking, enabling
communication between processes over a network.

The system uses Java Socket, a tailored solution for
developing network applications. The integration of
cloud computing enhances data storage and security
by providing a distributed and scalable infrastructure.
The system incorporates multithreading for
concurrent chat operations and uses JDBC for
database connectivity. It supports group and private
chats with cloud computing offering additional
efficiency and security. The Java Swing library is
employed to create a user-friendly interface.

In the document [3], the authors present a
LAN-based chat program designed to improve
internal communication within organizations using
the TCP/IP protocol. This system ensures secure and
cost-free communication by allowing real-time
messaging and file transfer between users connected
to the same local network. The software is
implemented in Java and was tested on the LANs of a
university's laboratory.

In the document [4], the authors focus on designing
and implementing communication applications (chat
software and an email client) tailored for embedded
network terminals. These terminals, based on limited-
resource systems, face challenges when running
conventional communication software designed for
personal computers. The proposed solution
specifically addresses these challenges by creating
lightweight software that can run efficiently on
embedded systems.

In the document [5], the authors discuss the
development of an intelligent chat service that utilizes
AIML (Artificial Intelligence Markup Language) for
creating chatbots. The primary focus is on a hosting
platform that allows users to deploy multiple chatbots
using pre-existing AIML templates. These bots can be
customized to resemble specific personalities or serve
as customer support for businesses and institutions.
Additionally, the platform offers APIs for retrieving
weather data, news updates, dictionary definitions,
and more, which can enhance the functionality of the
hosted bots.

III. THEORETICAL FOUNDATION

A. Communication Protocols: The TCP/IP Model
It is essential for any devices within a network to

speak the same language or protocol to ensure that
data packets can reach their destination from a source.
Therefore, a communication protocol represents a set
of rules that establishes the format and method of data
transmission, managing aspects related to:

• The physical construction of the network.

• The way computers connect within the network.

• The format and transmission of data.

• Error resolution.

These rules are developed and maintained by
various committees or organizations such as the IEEE
(Institute of Electrical and Electronic Engineers), the
ANSI (American National Standards Institute), and the
ISO (International Organization for Standardization).

Chat System Using Transmission Control Protocol/Internet Protocol And C Programming Language

3

In the online environment, the TCP/IP model
(Fig. 1.) is considered the technical standard. It was
created as an open standard, meaning it can be used
freely. The TCP/IP model is structured into four
hierarchical levels:

• Application level: It ensures the correct
representation of data. This level includes the
Application and Presentation layers of the OSI
(Open System Interconnection) model. At this
level, there are several protocols: SMTP (Simple
Mail Transfer Protocol) and POP (Post Office
Protocol) used for sending and receiving
messages, HTTP (Hypertext Transfer Protocol) or
HTTPS (Hypertext Transfer Protocol Secure) for
the web, FTP (File Transfer Protocol) for file
transfer, DNS (Domain Name System) for domain
name resolution, etc. Each of these protocols has a
specific number of ports for communication.

• Transport level: It facilitates transport between
the source and destination points. Additionally, it
guarantees data flow control, error correction, and
quality of service. At this level, there are two
important protocols: TCP (Transmission Control
Protocol) and UDP (User Datagram Protocol).
TCP is a connection-oriented protocol that
ensures information reaches its destination exactly
as transmitted, providing stable and error-free
communication. In contrast, the UDP protocol
does not require establishing a connection with
the recipient, being a connectionless protocol.

• Internet level: Its role is to guide data packets to
their destination, identifying the optimal route and
managing their transfer. At this level, the central
protocol is the IP (Internet Protocol).

• Network access level: Its role is to manage the
connection with the network's physical medium,
regardless of the technology used. This level
includes the Data Link and Physical layers,
according to the OSI model.

Fig. 1. Communication protocols. The TCP/IP model

TCP has many functionalities when connecting a

client and a server. For example, it is suitable for
applications that require high reliability and have a

relatively lower transmission time. Other protocols
like HTTP, HTTPS, FTP, SMTP, and Telnet use it.
TCP rearranges data packets in the established order.
There is an absolute guarantee that the data sent via
email remains intact and arrives in the same order it
was sent. Before user data is transmitted, TCP
controls the flow and requires three packets to
establish a socket connection. Reliability and
congestion control are the responsibilities of TCP.
Additionally, it performs error checking and recovery.
Incorrect packets are retransmitted from the source to
the destination.

The entire process can be divided into the
following stages (Fig. 2.):

Fig. 2. Server and client for the TCP/IP protocol

Instructions for configuring a TCP Server:

• create(): This function is used to create the TCP
socket.

• bind(): The socket is assigned to the server's
address.

• listen(): The server socket is configured to
passive mode, waiting for a client to initiate a
connection.

• accept(): At this point, the connection is
established between the client and server, and
both are ready to transfer data.

• Repeat from step 3 to continue the process.

Instructions for Configuring a TCP Client:
• Create the TCP socket: A new socket is

initialized for communication using the TCP
protocol.

• Connect the newly created client socket to the
server: A connection is established between the
client socket and the desired server [6].

B. The C Programming Language

The template is used to format your paper and style
the text. All margins, column widths, line spaces, and
text fonts are prescribed; please do not alter them. You

D. I. Popa, A. A. Ciorobea, A. A. Beșliu-Gherghescu, N. Bizon, S. A. Drăgușin 4

may note peculiarities. For example, the head margin
in this template measures proportionately more than is
customary. This measurement and others are
deliberate, using specifications that anticipate your
paper as one part of the entire proceedings, and not as
an independent document. Please do not revise any of
the current designations.

In the 1970s, Dennis Ritchie developed the C
programming language, which is both an imperative
and procedural language. Although it is a high-level
language, it also offers low-level control over system
resources. Its ability to create system software,
portability, and efficient performance are all attributes
of C.

Key features and aspects of the C programming
language:

• Simple syntax: The easily understandable syntax
of C makes it suitable for both beginners and
experienced developers.

• Portability: Because C provides a lower level of
abstraction and is not heavily dependent on
platform-specific features, programs written in C
are often compatible with multiple operating
systems and hardware architectures.

• Close resource control: Programmers can
accurately control system resources, such as
memory and processors, making C suitable for
developing operating systems and other types of
system software.

• Efficient performance: C is often used to create
system-level software or applications that require
significant resources due to its renowned
efficiency and high performance.

• Standard libraries: The rich standard library of
C offers predefined functions and procedures for
various operations, such as file manipulation,
memory management, and working with strings.

• Pointers: Since C supports pointers, programmers
can work directly with memory addresses and
perform efficient operations on data.

• Procedural programming: The program is
structured into functions that can call other
functions to accomplish specific tasks, as C is a
procedural language. This programming style
organizes the code and makes it easier to
understand.

• Extensibility: C++ and C# are examples of other
programming languages derived from C.
Additionally, C has played a significant role in
shaping modern languages [7].

Concurrent programming in C:

Concurrent programming is an approach where
multiple threads or processes run simultaneously,
sharing resources and cooperating to solve problems.
In the context of the C programming language,
concurrent programming can be achieved using
libraries such as pthreads (POSIX threads) or
OpenMP.

Concurrent programming in C enables the
development of applications that can benefit from
increased performance and efficient use of hardware
resources. Here are some important aspects:

• Thread: A thread represents a sequence of
instructions that runs independently within a
process. The pthreads library offers functionalities
for creating, synchronizing, and managing threads
in C.

• Synchronization and access to shared
resources: Concurrent programming involves
managing access to shared resources, such as
global variables or shared memory areas.
Mechanisms like semaphores, mutexes (MUTual
EXclusion), and condition variables are used to
avoid concurrency issues, such as deadlocks or
race conditions.

• OpenMP directive: OpenMP is a simple and
portable approach for concurrent programming in
C. By adding special pragmas in the source code,
loops, functions, or other critical sections of the
program can be parallelized.

• Benefits of concurrent programming: Increased
performance: Applications can run faster on
multi-core processors. Efficient resource
utilization: Hardware resources are used more
efficiently, reducing waiting time [8].

C. Symmetric Encryption Algorithms: The Polybius
Cipher
In the category of symmetric encryption systems,

the Polybius cipher, also known as the Polybius
square, is a simple encryption technique that
transforms letters into numbers. To perform this
conversion, a matrix or a table is used [9].

The plaintext consists of letters from the alphabet,
and the data structure in which the alphabet letters are
arranged is the secret key.

The fundamental encryption and decryption
principles are as follows:

• A square of covering dimension contains the
letters of the Latin alphabet.

• In the Latin alphabet, the letters I and J are used
together to form a single character, as the final
character (between I and J) can easily be chosen
based on the context of the message.

• The pair of numbers (the intersection of the row
and column) corresponding to the position of the
character in a square is selected to encrypt it.

Observation 1: Rearranging the letters in a 5x5
square (Fig. 3.) allows for changing the code.

Chat System Using Transmission Control Protocol/Internet Protocol And C Programming Language

5

Fig. 3. 5x5 Polybius square

Observation 2: The square can be of size 6x6

(Fig. 4.), and in this case, the digits from 0 to 9 can
also be added. The Polybius cipher, using a special
matrix, offers fast and efficient encryption [10].

Fig. 4. 6x6 Polybius square

D. Arduino IDE

Arduino IDE is an open-source Integrated
Development Environment used for programming and
developing projects on Arduino boards. Its key
features include:

• Simple and intuitive interface: It includes a
modern editor (code writing interface with auto-
completion and navigation), Serial Monitor
window, library manager, and debugging tools
(live debugger allowing real-time code analysis).

• Programming language: Arduino IDE uses a
simplified dialect of the C/C++ language.
Programmers can write code for Arduino boards
using predefined functions and libraries.

• Uploading code to the board: After writing the
code, it can be uploaded to the Arduino board via
a USB cable. The Arduino board is selected from
the "Tools" menu, and the code is uploaded
subsequently.

• Libraries and examples: It comes with a set of
predefined libraries to facilitate programming
various functionalities. Additionally, code

examples for different modules, components, and
sensors can be accessed [11].

E. Wi-Fi Microcontrollers: ESP8266 Model
Microcontrollers play a crucial role in connecting

and communicating with other IoT systems and
devices. They gather data from sensors, process it, and
then transmit it to other devices or systems using
wired or wireless communication protocols.
Additionally, microcontrollers can receive and
interpret commands and control signals from other
devices, which they can subsequently use to manage
the activities and behavior of the embedded device.
Due to their small size, minimal energy consumption,
and affordability, microcontrollers are well-suited for
IoT applications. They can be programmed to perform
a variety of functions and are particularly suitable for
battery-powered electronic devices. Various
microcontrollers are available on the market, each with
its unique features and capabilities [12].

Wi-Fi represents one of the most widely adopted
protocols for wireless connectivity among local area
devices. It is commonly used to provide internet
access to these devices. Wi-Fi is built upon the IEEE
802.11 family of standards and operates within the 2.4
GHz and 5 GHz frequency bands (with Wi-Fi 6E also
utilizing the 6 GHz band) [13].

The ESP8266 (Fig. 5.) is an affordable Wi-Fi
microchip equipped with a complete TCP/IP stack and
microcontroller capabilities. Developed by Espressif
Systems, it operates seamlessly with the Arduino IDE
compiler. This versatile device combines features from
a standard Arduino microchip and has the added
capability to connect to the internet via its built-in Wi-
Fi module [12].

Key features of the ESP8266 microcontroller
include:

• Compact size: The ESP8266 is small and easily
integrable into electronic projects.

• Processing power: It boasts powerful processing
speeds onboard, with a central processing unit of
either 80 MHz or 160 MHz.

• Storage space: It has ample storage capacity,
allowing integration with other devices such as
sensors.

• Compatibility: To make this module compatible
with other development boards, external voltage
leveling must be performed. The ESP8266 does
not have a built-in voltage regulator.

• Supported interfaces: SPI (Serial Peripheral
Interface), I2C (Interface for communication
between integrated circuits), I2S (Interface for
digital audio data transfer) and UART (Supported
on certain pins).

• ADC (Analog-to-Digital Conversion): It
features a 10-bit resolution ADC converter. The
digital signal is used to turn on the LED.

• TCP/IP protocol: Protocol stack for network
communication.

D. I. Popa, A. A. Ciorobea, A. A. Beșliu-Gherghescu, N. Bizon, S. A. Drăgușin 6

Configuration and programming of the
ESP8266 can be done using Arduino IDE as
follows:

• Open Arduino IDE and access the preferences
window.

• In the preferences window, add the URLs for
additional board managers.

• Install the necessary libraries and drivers to have
the ESP8266 recognized by Arduino IDE.

• After configuration, the ESP8266 can be
programmed using Arduino IDE [14].

Fig. 5. ESP8266

F. I2C
The serial communication bus called I2C (Fig. 6.),

also known as IIC, was developed by Philips
Semiconductors (now NXP Semiconductors) in 1982.
It is often used to connect low-speed peripheral
integrated circuits to processors and microcontrollers
for short-distance communications on the same board.
The SDA (Serial Data Line) and the SCL (Serial
Clock Line) are the only signals used by the IoT.

Features:

• Combines the best features of SPI and UART
protocols.

• Multiple peripheral devices (slaves) can be
connected to a single controlling device (master),
like SPI. This is useful when using more than one
microcontroller recording data to a single
memory card or displaying text on a single LCD.

• Uses only two wires to transmit data between
devices, like UART communication: SDA (Serial
Data) is the line for transmitting and receiving
data between master and slave and SCL (Serial
Clock) is the line that carries the clock signal.

Operations:

• Data is transferred in messages in I2C.
• Messages are divided into data frames.
• Each message contains: address frame, data

frame(s), start and stop conditions, read/write bit,
ACK (acknowledge) or NACK (no-
acknowledge) bit. Address frame contains the
binary address of the slave, identifying the device

when the master wants to communicate with it.
Data frame contains data transmitted. Start and
stop conditions are the signals for the beginning
and end of the message. Read/write bit specifies
whether the master is sending data to the slave
(low voltage level) or requesting data from it
(high voltage level). During communication over
an I2C bus, the slave device responds with an
ACK/NACK bit after each data frame.

• I2C uses addresses to communicate with devices
since it does not have slave select lines like SPI:
The master sends the slave address to all
connected devices. Each slave compares the
received address with its own address and
responds with an ACK bit if the address matches
[15].

Fig. 6. I2C

G. Debouncing
Debouncing is the process of eliminating the

possibility of producing oscillating signals after a
single key press, ensuring a more consistent
movement.

The purpose of debouncing is to provide stability
and reliability to the keyboard by reducing or
eliminating the "key bounce" or "chatter"
phenomenon.

Methods of debouncing for keyboards in
Arduino:
• Software debouncing: This method involves

adding delays in the code to eliminate bounce.
Programmers can add delays using the delay()
function to force the controller to wait for a
certain. The disadvantage of this method is that it
can cause abrupt pauses in the program and
increase processing time.

• Hardware debouncing: In case of using a pull-
up or pull-down resistor, a 10 kΩ resistor is
connected between the keyboard's input pin and
the power supply pin (VCC or GND). This will
establish a stable level for the input pin, reducing
fluctuations. In case of using a capacitor, a
capacitor is connected between the keyboard's
input pin and the power supply pin. The capacitor
will filter electrical noise and help stabilize the
signal.

• Example of debouncing in Arduino: An
example of debouncing for a button can be found
in the Built-in Examples section of the official

Chat System Using Transmission Control Protocol/Internet Protocol And C Programming Language

7

Arduino website. This example uses the millis()
function to track the time elapsed since the button
was pressed [16].

IV. PROPOSED SOLUTION: COMMUNICATION
BETWEEN TWO ESP8266 MICROCONTROLLERS

The steps for developing a chat system using
embedded systems with ESP8266 microcontrollers
are as follows:

A. Planning And Creating The Organizational
Charts
It is important to start by having a plan in mind for

creating the organizational charts.
Given the fact that the paper is about the

communication between two ESP8266
microcontrollers, there are going to be two users, one
of them serving as both a server and a client, and the
other one serving only as a client.

Therefore, the organizational charts corresponding
to the server (Fig. 7.) and the client (Fig. 8.) codes
have been created.

Fig. 7. Organizational chart corresponding to server code

D. I. Popa, A. A. Ciorobea, A. A. Beșliu-Gherghescu, N. Bizon, S. A. Drăgușin 8

Fig. 8. Organizational chart corresponding to client code

B. Connecting The Physical Components Used
The physical components used (an ESP8266, an

I2C, a 16x2 LCD, a resistor and a LED for each user)
must be connected as shown in Fig. 9.

Fig. 9. Circuit diagram of the physical components used for two

users

The second law of Kirchhoff is used to calculate
the values of the resistors used as shown in equation
(1).

The value of the resistor of each user depends on
the color of the LED. For example, the documentation
indicates that the green LED operates at 2.2V, while
the blue LED operates at 3.2V. Both LEDs have a
forward voltage of 2.2V.

Also, the documentation for the ESP8266
specifies that this microcontroller operates at 3.3V.

Equation (2) is for the green LED used for the first

user:

The standard nominal value 𝑅	 = 56 Ω from the
E24 series was chosen.

Equation (3) is for the blue LED used for the
second user:

The standard nominal value 𝑅	 = 6.8 Ω from the
E24 series was chosen.

C. Setting Up Arduino IDE And Connecting
ESP8266 To Wi-Fi Network
Open Arduino IDE, connect the ESP8266 board

to the laptop, and select the correct board model in the
development environment, as shown in Fig. 10.

Fig. 10. NodeMCU, the development board based on the ESP8266

module

The #include <ESP8266WiFi.h> library is used
to connect the ESP8266 board to the Wi-Fi network,
and the #include <LiquidCrystal_I2C.h> library
facilitates communication between the Arduino board
and the I2C LCD display.

Additionally, the line of code
LiquidCrystal_I2C lcd(0x27, 16, 2); creates an
object named lcd that will be used to control the I2C
LCD display with address 0x27, having 16 columns
and 2 rows, as shown in Fig. 11.

Fig. 11. Libraries and settings for the ESP8266 and the I2C in the

Arduino IDE code

Chat System Using Transmission Control Protocol/Internet Protocol And C Programming Language

9

D. Wi-Fi network name and security key
Turn on the mobile hotspot, identify the SSID

(Wi-Fi network name) and the security key (Wi-Fi
password) to connect to the Wi-Fi network on the
laptop (Fig. 12.) and use them in the Arduino IDE
code, as shown in Fig. 13.

Fig. 12. Connecting to the Wi-Fi network

For the code in Arduino IDE, write the mobile

hotspot's name and password as follows:

Fig. 13. SSID and Wi-Fi password in Arduino IDE

E. Command Prompt
Open Command Prompt: Press the Windows

button on the bottom bar of the laptop, type "cmd,"
and press Enter.

Use the "ipconfig" command to display
information about the IP address (192.168.203.122),
subnet mask (255.255.255.0), and default gateway for
all network adapters on the laptop (192.168.203.50),
as shown in Fig. 14.

Fig. 14. "ipconfig" command used in Command Prompt

Following the information obtained earlier from

cmd, the architecture of the chat system
communication is being planned as shown in Fig. 15.

Fig. 15. Chat system communication architecture

For the code in Arduino IDE, write the

information found from cmd as shown in Fig. 16.

Fig. 16. IP, GW and MASK in Arduino IDE

F. Programming The LED To Turn On When
Connected
The digital pin D4 is used to control an LED as

shown in Fig. 17.

Fig. 17. The digital pin D4 used to control an LED

Additionally, within the setup() function, the LED

pin is set to output mode (OUTPUT), which means
we send signals to this pin and, following the
initiation of communication between the two
microcontrollers, the logical level of the LED pin is
set to HIGH (3.3V), resulting in the LED turning on
upon connection.

The LED is defined as a digital output as shown in
Fig. 18.

Fig. 18. LED defined as a digital output

The LED lights up when connected as shown in

Fig. 19.

Fig. 19. LED lights up when connected

G. Implementation Of Encryption And Decryption
Functions Using The Polybius Cipher
The secret key and the size of the 5x5 matrix are

established as shown in Fig. 20.

Fig. 20. LED lights up when connected

Subsequently, an encryption function and a

decryption function are implemented using the
Polybius cipher, the encryption being carried out as
follows:
• Initialization of the encrypted message: An

empty variable encryptedMessage is created to
store the encrypted message.

• Building the Polybius square: A two-
dimensional matrix polybiusTable is created to
represent the Polybius square. This matrix is
constructed using the given key.

D. I. Popa, A. A. Ciorobea, A. A. Beșliu-Gherghescu, N. Bizon, S. A. Drăgușin 10

• Encrypting the message: Each character in the
original message is processed. If the character is
'j', it is replaced with 'i'. The coordinates (row,
column) of the character are found in the
Polybius square. If the character is found in the
table, the encrypted coordinates (represented as
digits) are added to the encryptedMessage. If the
character is not found in the table, it is added
unchanged to the encryptedMessage.

• Returning the encrypted message: The function
returns the encrypted message.

V. CONDUCTING EXPERIMENTS

A. Typing And Sending Messages Between Two
Users
Typing and sending messages between two users

using Serial Monitor in Arduino IDE as shown in Fig.
21.

Fig. 21. Serial Monitor in Arduino IDE

B. Testing The Communication Between Two
ESP8266 Microcontrollers
Testing the communication between two ESP8266

microcontrollers (Fig. 22, Fig. 23, Fig. 24.):

Fig. 22. Users’ IP

Fig. 23. Users’ GW

Fig. 24. Users’ conversation

CONCLUSIONS
The development of a chat system between Wi-Fi

microcontrollers highlights the practical implications
of integrating technology, programming, and
communication in IoT and smart devices.

The chat system’s efficiency and flexibility were
enhanced using the C programming language, a
foundational tool in system software development and
hardware design. Concurrent programming in C
required careful synchronization and resource
management to achieve robust performance.

Communication between the two ESP8266
microcontrollers was established using the TCP/IP set
of protocols. One microcontroller functioned as a
server, while the other acted as a client, demonstrating
the practical application of networking concepts. The
ESP8266 microcontrollers, selected for their
compatibility with IoT projects and Wi-Fi
capabilities, were programmed using the Arduino
IDE, an essential tool for developing embedded
systems.

The implementation also incorporated the I2C
protocol for short-distance communications,
balancing its simplicity and efficiency with its known
limitations of speed and distance. Additionally,
keyboard debouncing was implemented to ensure
stable and reliable operation of the system.

Cryptography played a key role in securing
communication. The Polybius cipher, using a special
matrix, offers fast and efficient encryption, ensuring
data confidentiality within the system.

This paper underscores the importance of
seamlessly combining hardware and software to
create innovative IoT solutions and highlights the
versatility of tools like the Arduino IDE and ESP8266
microcontrollers in advancing connected
technologies.

The following research will focus on developing an
ergonomic and user-friendly interface for the
proposed chat system and implementing new
encryption algorithms for the data transferred between
clients and the server to ensure communication
security.

Chat System Using Transmission Control Protocol/Internet Protocol And C Programming Language

11

REFERENCES
[1] D. Henriyan, Devie Pratama Subiyanti, R. Fauzian, D.

Anggraini, M. Vicky Ghani Aziz, and Ary Setijadi
Prihatmanto, “Design and implementation of web based real
time chat interfacing server,” pp. 83–87, Feb. 2017, doi:
10.1109/ICSENGT.2016.7849628.

[2] M. Cai, “The design method of network chat system based on
socket and cloud computing,” Proceedings - 2012
International Conference on Computer Science and Service
System, CSSS 2012, pp. 610–613, 2012, doi:
10.1109/CSSS.2012.157.

[3] Mohammed A. Ahmed, “Design and Implement Chat
Program Using TCP/IP,” Iraqi Journal for Computers and
Informatics, vol. 44, no. 1, Jun. 2018, doi:
10.25195/2017/4417.

[4] P. Wang, H. He, R. T. Cai, H. L. Jiang, and S. W. Xu, “The
design and implementation of application communication
based on embedded network terminal,” Proceedings - 2010
1st ACIS International Symposium on Cryptography, and
Network Security, Data Mining and Knowledge Discovery,
E-Commerce and Its Applications, and Embedded Systems,
CDEE 2010, pp. 278–282, 2010, doi:
10.1109/CDEE.2010.61.

[5] G. Saqib, K. Faizan, and N. Ghatte, “Intelligent Chatting
Service Using AIML,” Proceedings of the 2018 International
Conference on Current Trends towards Converging
Technologies, ICCTCT 2018, Nov. 2018, doi:
10.1109/ICCTCT.2018.8550989.

[6] H. Rili, “Research and application of TCP/IP protocol in
embedded system,” 2011 IEEE 3rd International Conference
on Communication Software and Networks, ICCSN 2011, pp.
584–587, 2011, doi: 10.1109/ICCSN.2011.6014961.

[7] O. Gazi, “Modern C Programming,” Modern C Programming,
2024, doi: 10.1007/978-3-031-45361-8.

[8] M. Sonnenschein, “An extension of the language C for
concurrent programming,” Parallel Comput, vol. 3, no. 1, pp.
59–71, Mar. 1986, doi: 10.1016/0167-8191(86)90007-4.

[9] S. A. Dragusin, N. Bizon, and R. N. Bostinaru, “A Brief
Overview Of Current Encryption Techniques Used In
Embedded Systems: Present And Future Technologies,” 15th
International Conference on Electronics, Computers and
Artificial Intelligence, ECAI 2023 - Proceedings, 2023, doi:
10.1109/ECAI58194.2023.10194034.

[10] Petre. Anghelescu, Automate celulare : fundamente şi
abordări practice cu aplicaţii în criptare. Bucuresti: Matrix
Rom, 2012.

[11] F. Asadi, “Essentials of ArduinoTM Boards Programming,”
2023, doi: 10.1007/978-1-4842-9600-4.

[12] K. M. Hosny, W. M. El-Hady, and F. M. Samy,
“Technologies, Protocols, and applications of Internet of
Things in greenhouse Farming: A survey of recent advances,”
Information Processing in Agriculture, Apr. 2024, doi:
10.1016/J.INPA.2024.04.002.

[13] “Insights - Internet of Things | ScienceDirect.com by
Elsevier.” Accessed: May 07, 2024. [Online]. Available:
https://www.sciencedirect.com/journal/internet-of-
things/about/insights

[14] N. Cameron, “Electronics Projects with the ESP8266 and
ESP32: Building Web Pages, Applications, and WiFi Enabled
Devices,” Electronics Projects with the ESP8266 and ESP32:
Building Web Pages, Applications, and WiFi Enabled
Devices, pp. 1–697, Jan. 2020, doi: 10.1007/978-1-4842-
6336-5/COVER.

[15] K. M. Lynch, N. Marchuk, and M. L. Elwin, “I2C
Communication,” Embedded Computing and Mechatronics
with the PIC32, pp. 191–211, Jan. 2016, doi: 10.1016/B978-
0-12-420165-1.00013-5.

[16] R. Toulson and T. Wilmshurst, “Interrupts, Timers, and
Tasks,” Fast and Effective Embedded Systems Design, pp.
199–233, Jan. 2017, doi: 10.1016/B978-0-08-100880-
5.00009-8.

D. I. Popa, A. A. Ciorobea, A. A. Beșliu-Gherghescu, N. Bizon, S. A. Drăgușin 12

